Fatty acid amide hydrolase deficiency limits early pregnancy events.

نویسندگان

  • Haibin Wang
  • Huirong Xie
  • Yong Guo
  • Hao Zhang
  • Toshifumi Takahashi
  • Philip J Kingsley
  • Lawrence J Marnett
  • Sanjoy K Das
  • Benjamin F Cravatt
  • Sudhansu K Dey
چکیده

Synchronized preimplantation embryo development and passage through the oviduct into the uterus are prerequisites for implantation, dysregulation of which often leads to pregnancy failure in women. Cannabinoid/endocannabinoid signaling via cannabinoid receptor CB1 is known to influence early pregnancy. Here we provide evidence that a critical balance between anandamide synthesis by N-acylphosphatidylethanolamine-selective phospholipase D (NAPE-PLD) and its degradation by fatty acid amide hydrolase (FAAH) in mouse embryos and oviducts creates locally an appropriate "anandamide tone" for normal development of embryos and their oviductal transport. FAAH inactivation yielding higher anandamide or experimentally induced higher cannabinoid [(-)-Delta9-tetrahydrocannabinol] levels constrain preimplantation embryo development with aberrant expression of Cdx2, Nanog, and Oct3/4, genes known to direct lineage specification. Defective oviductal embryo transport arising from aberrant endocannabinoid signaling also led to deferred on-time implantation and poor pregnancy outcome. Intercrossing between wild-type and Faah-/- mice rescued developmental defects, not oviductal transport, implying that embryonic and maternal FAAH plays differential roles in these processes. The results suggest that FAAH is a key metabolic gatekeeper, regulating on-site anandamide tone to direct preimplantation events that determine the fate of pregnancy. This study uncovers what we believe to be a novel regulation of preimplantation processes, which could be clinically relevant for fertility regulation in women.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fatty acid amide hydrolase substrate specificity.

Fatty acid amide hydrolase (FAAH), also referred to as oleamide hydrolase and anandamide amidohydrolase, is a serine hydrolase responsible for the degradation of endogenous oleamide and anandamide, fatty acid amides that function as chemical messengers. FAAH hydrolyzes a range of fatty acid amides, and the present study examines the relative rates of hydrolysis of a variety of natural and unnat...

متن کامل

Structure and function of fatty acid amide hydrolase.

Fatty acid amide hydrolase (FAAH) is a mammalian integral membrane enzyme that degrades the fatty acid amide family of endogenous signaling lipids, which includes the endogenous cannabinoid anandamide and the sleep-inducing substance oleamide. FAAH belongs to a large and diverse class of enzymes referred to as the amidase signature (AS) family. Investigations into the structure and function of ...

متن کامل

Luciferin Amides Enable in Vivo Bioluminescence Detection of Endogenous Fatty Acid Amide Hydrolase Activity

Firefly luciferase is homologous to fatty acyl-CoA synthetases. We hypothesized that the firefly luciferase substrate d-luciferin and its analogs are fatty acid mimics that are ideally suited to probe the chemistry of enzymes that release fatty acid products. Here, we synthesized luciferin amides and found that these molecules are hydrolyzed to substrates for firefly luciferase by the enzyme fa...

متن کامل

Endocannabinoid Degradation and Human Fertility

Anandamide (AEA) impairs mouse pregnancy and embryo development. Here, we overview the role of AEA in sexual function, focusing on AEA degradation during human pregnancy. Human peripheral lymphocytes express the AEA-hydrolyzing enzyme fatty acid amide hydrolase (FAAH), which decreases in miscarrying women. FAAH is regulated by progesterone and Th1/Th2 cytokines, whereas the AEA transporter and ...

متن کامل

Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer's disease brains.

The endocannabinoid system is still poorly understood. Recently, the basic elements that constitute it, i.e., membrane receptors, endogenous ligands, and mechanisms for termination of the signaling process, have been partially characterized. There is a considerable lack of information, however, concerning the distribution, concentration, and function of those components in the human body, parti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of clinical investigation

دوره 116 8  شماره 

صفحات  -

تاریخ انتشار 2006